
Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

Weapon Generator and Validator using Graph Based
Model of Part Interaction in Borderlands 2

Raysha Erviandika Putra - 135240501
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

1rayshaervi557@gmail.com, 13524050@std.stei.itb.ac.id

Abstract—Borderlands 2’s signature modular weapon system
assembles firearms from interchangeable parts according to
compatibility and statistical rules. We introduce BLWeap, a
prototype that formalizes this process as a constraint-satisfying
sub-graph traversal: parts are nodes in a NetworkX graph, edges
encode compatibility, and a depth-first backtracking search
assembles one part per slot (body, barrel, grip, etc.) under user-
defined class, manufacturer, element, and stat thresholds. In
practice, BLWeap parses community-maintained dumps for
realistic part data, prunes infeasible branches early, and halts on
the first valid build. A Tkinter GUI with embedded Matplotlib
visualizations displays both the selected parts and their induced
compatibility sub-graph. BLWeap illustrates how graph theory
and search algorithms can be applied to procedural content
generation in interactive applications.

Keywords—Borderlands 2, Graph Theory, Graph Traversal,
DFS, Weapon Generation

I. INTRODUCTION
Borderlands 2 is an RPG first-person shooter developed by

Gearbox Software and released in 2012. The game is renowned
for its chaotic combat, expansive loot system, and especially its
procedurally generated weapons, which set it apart from other
titles in the genre [1]. Unlike traditional RPG shooters that
provide a fixed set of weapons with predetermined statistics,
Borderlands 2 features a unique modular weapon system in
which every weapon is assembled from several
interchangeable parts. These components include the barrel,
grip, body, stock, accessories, and elemental modules, each
contributing distinct mechanical and visual characteristics to
the final weapon.
Weapons in Borderlands 2 are categorized into several

classes, such as pistols, submachine guns (SMGs), shotguns,
sniper rifles, and assault rifles. Each class is defined by its own
set of compatible part types and visual design rules.
Additionally, weapon parts are associated with many fictional
manufacturers, including Jakobs, Maliwan, Hyperion, and
others, each imparting unique stylistic elements and statistical
tendencies to the weapon. The modular nature of this system
means that each part contributes specific statistical effects such
as damage, accuracy, fire rate, reload speed, and magazine size
as well as visual aesthetics, resulting in millions of possible
weapon combinations and a highly diverse loot experience .

Fig 1 Borderlands 2 Parts Visual

Source https://borderlands-
archive.fandom.com/wiki/Borderlands_2:Weapon_Components

In this paper, we introduce BLWeap, a system designed to
model Borderlands 2’s weapon generation using concepts from
graph theory and constraint satisfaction. BLWeap encodes the
modular weapon system as a structured graph of components
and their interrelations. By mapping out which part can coexist
and how they interact, then performs a guided search through
this graph, respecting threshold, to assemble only those
combinations that meet all criteria specified by the user. This
formalization enables the system to generate valid weapon
configurations under a range of constraints, such as
manufacturer preferences, required part types, or minimum
statistical thresholds.
To ensure that the system accurately reflects the game’s

logic, structured part definitions were extracted from the
GitHub repository gibbed/Borderlands2Dumps [2], maintained
by the community. This dataset provides access to raw part
identifiers, classifications, and compatibility information
directly from the game files, enabling the construction of a
graph-based model that mirrors the actual data and constraints
found in Borderlands 2.

II. THEORY FOUNDATION

A. Weapon Rules
Weapon Generation Rules Weapon generation in

Borderlands 2 is controlled by several rules [3] that ensure both
the validity and diversity of the generated weapons:
1. Class Consistency: All parts used to construct a weapon
must belong to the same weapon class. The primary weapon
classes in Borderlands 2 are Pistols, Submachine Guns
(SMGs), Shotguns, Sniper Rifles, and Assault Rifles. Each
class has its own set of compatible parts.
2. Stat Modifiers: Every weapon part contributes specific
statistical modifiers such as damage, accuracy, fire rate,

mailto:1author@gmail.com
mailto:author@std.stei.itb.ac.id
https://borderlands-archive.fandom.com/wiki/Borderlands_2:Weapon_Components
https://borderlands-archive.fandom.com/wiki/Borderlands_2:Weapon_Components

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

reload speed, magazine size and other stats which
collectively determine the final attributes of the assembled
weapon.
3. Manufacturer Synergies: Certain parts provide additional
bonuses when combined with other parts from the same
manufacturer. For example, equipping a Jakobs grip on a
weapon with Jakobs manufacturer will grant increased
magazine size or faster reload speed. The game features
several fictional manufacturers, including Jakobs, Bandit,
DAHL, Hyperion, Maliwan, Tediore, Torgue, and Vladof.
4. Part-Type Uniqueness: A valid weapon must include
exactly one part of each required type (e.g., one barrel, one
grip, one body, etc.), the number of part needed varies
between weapon class.
5. Manufacturer Determination: The manufacturer of a
weapon is determined by the body part used in its
construction, influencing both the weapon’s aesthetics and
its core statistical tendencies, whilst the part other than body
can merge having multiple different manufacturer sources.

Fig 2 Body Part of weapon class "Pistol"

Source https://imgur.com/gallery/borderlands-2-weapon-parts-wkkWi

Fig 2 shows all pistol class weapon manufacturer with their
corresponding unique weapon parts (Maliwan with Maliwan
parts, Bandit with Bandit parts, etc). and here are images
showing each versions of weapon class

Fig 3 Body Parts of weapon class "Assault Rifles"

Source https://imgur.com/gallery/borderlands-2-weapon-parts-wkkWi

Fig 4 Body Parts of weapon class "Sniper"

Source https://imgur.com/gallery/borderlands-2-weapon-parts-wkkWi

Fig 5 Body Parts of weapon class "Shotgun"

Source https://imgur.com/gallery/borderlands-2-weapon-parts-wkkWi

Fig 6 Body Parts of weapon class "SMG"

Source https://imgur.com/gallery/borderlands-2-weapon-parts-wkkWi

Shown from fig 2 through fig 6, each combination of fully
built weapon with distinctive body parts for each weapon class
and manufacturer, highlighting how visual style and part‐type
rules vary across classes. In the next section, we translate each
possible part into a unique item or object.

https://imgur.com/gallery/borderlands-2-weapon-parts-wkkWi
https://imgur.com/gallery/borderlands-2-weapon-parts-wkkWi
https://imgur.com/gallery/borderlands-2-weapon-parts-wkkWi
https://imgur.com/gallery/borderlands-2-weapon-parts-wkkWi
https://imgur.com/gallery/borderlands-2-weapon-parts-wkkWi

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

B. Graph
Graph G is defined as a pair G = (V, E), where V is a set of

vertices or nodes and E is a set of edges connecting pairs of
vertices [4]. In this context, nodes: Represent individual
weapon parts where each weapon parts has attributes: id (as
specifier), Type, Class, Manufacturer, Stat Modifiers, and
Compatibility. Edges: Represent compatibility between parts.
Edge (A, B) exists if part A can be combined with part B.
a. Undirected Graph

Fig 6 Undirected Graph

Source https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025

An undirected graph is a collection of nodes connected by
edges that have no arrowheads. each edge simply indicates a
two-way relationship. In the example fig 6: Simple undirected
graph Every pair of connected vertices has exactly one edge
and there are no loops or parallel edges. Undirected multigraph.
Some vertex pairs are joined by multiple edges, illustrating that
more than one “connection” can exist between the same two
nodes.

b. Adjacent
Two vertices u and v in G are said to be adjacent if there

exists an edge (u, v) ∈ E connecting them [4]. In the context
of weapon construction, adjacency means the two parts can be
combined in a single weapon according to game constraints
(such as same weapon class and allowed combinations). For
example, a Jakobs Barrel Pistol and Jakobs Grip Pistol are
adjacent if they can be used together in a pistol build.

c. Subgraphs

Fig 7 Subgraph

Source https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025

A subgraph H = (V′, E′) of G is a graph where V′ ⊆ V and
E′ ⊆ E [4]. In this paper, a fully built weapon can be
represented as a graph of parts, the system constructs a sub-
graph consisting of the relevant parts to make a weapon, each
containing exactly one part of each required type.
d. Complete Graph

Fig 8 Complete Graphs

Source https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025

A complete graph is a simple graph in which every vertex
has an edge to every other vertex. A complete graph on n
vertices is denoted Kn. The number of edges in a complete
graph with n vertices is n(n − 1)/2 [4]. In a weapon build, all
parts must be connected with each other that ensures
compatibility between all part.
e. Hamiltonian Graph

Fig 9 Hamiltonian Graph

Source https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025

A Hamiltonian circuit in a graph is a sequence of adjacent
vertices. A Hamiltonian circuit is a circuit that visits each
vertex exactly once and is able to return to the origin vertex [4],
example on fig 8 where traversal goes from 1, 2, 3, 4. In
weapon generation, a valid build corresponds to a Hamiltonian
circuit (or sub-graph) that includes one part from each required
type, ensuring all parts are mutually compatible and the build
is complete. This process also there is more part left that
requires checking as it traces back to origin part.

Fig 10 Sub-graph Example Scenario

An example of constructed graph showed in fig 6 where
the resulted weapon would be a Pistol with the manufacturer
Jakobs, Vladof Grip, Jakobs Barrel, and a Bayonet Accessory.
The graph shows parts compatibility between class pistol and
shotgun (as example), the four different parts of the pistol is
able to make a Hamiltonian circuit whilst also able to satisfy
the minimum parts needed to construct a weapon. A special
case towards accessories which is a rather universal part where
some accessories is applicable to all weapon class (bayonet as
example). Shotgun parts is able to connect to each other and at
the same time connect to the bayonet accessory, although the
shotgun is able to make a Hamiltonian circuit, it does not
satisfy the minimum parts needed to construct a weapon.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

C. Search-Based Selection
The weapon generation itself is modeled as a constraint-

satisfying sub-graph traversal problem. The process of validity
checking in the system is equivalent to searching for a
Hamiltonian path under constraints, where: Each node in the
path must represent a distinct type, all selected nodes must be
pairwise connected (i.e., compatible) Additional user-defined
constraints (e.g., minimum damage, specific manufacturer)
must be satisfied.

1. Starting Node: Manufacturer Body (Anchor). Since
Borderlands 2 determines the weapon's manufacturer
primarily through its body, the generator begins by
selecting candidate body parts that match any specified
manufacturer threshold. This aligns with a rooted search
where: The root node R is the selected body part. From
the root, the search will branch to other possible part.

Fig 11 Generation Process Diagram

2. Search Algorithm: Depth-first search (DFS) is a graph
traversal algorithm that begins at a designated root and
explores as far as possible along each branch before
backtracking [5]. DFS excels at constraint satisfaction
tasks because it incrementally builds partial candidate
solutions and applies compatibility or constraint checks at
each step, pruning any branch that cannot lead to a valid
solution as soon as a part that does not satisfy is detected
[6]. In the weapon generation scenario, each recursion
level corresponds to assigning a part (body, barrel, grip,
etc.), compatibility tests eliminate infeasible builds, and
the algorithm stops immediately upon finding the first
fully valid configuration, avoiding full enumeration of all
combinations and keeping memory usage proportional to
the assignment depth rather than the total number of parts.

III. IMPLEMENTATION

A. Creating The Graph
With material and resources from [5][6][7]. First a parsed

JSON file containing all the weapon data from github
gibbed/Borderlands2Dumps [2] is used to provide realistic in-
game data. Using networkx a graph is created under the
previously stated rules.

Fig 12 Python Code - Graph Creation

Each id in the JSON uniquely identifies a single weapon part,
serving as a primary key within the system’s part registry.
Every part is represented as a structured JSON object,
encapsulating a variety of attributes. Specifically, each part
entry contains: id, type, class, and manufacturer. In addition,
each part includes a statModifiers dictionary that details the
numerical effects the part imparts on weapon statistics, and
other stats that is not visible, as well as an optional
compatibilityBonus field

Fig 13 JSON Object Format

B. Filtering
After the graph is created, user can enter some of the generic

stats modifier for a weapon. A normal weapon card at the very
least contains Damage, Accuracy, Fire Rate, Reload Speed,
and Magazine Size

Fig 14 Borderlands 2 Weapon Card

Source Screenshot Taken In-game by Author

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

With the limitation of the visible stats, user can state some of
the stat on the weapon and set them as threshold for the
weapon generation. The damage stat is calculated differently
from the other stats as it accounts for level of the player, for
proof of concept purposes only, the system will only accept
base stat of the weapon.

Fig 15 Stat Filtering

Stat filters is mapped like above, to be able to match the fields
within the JSON files, focusing on visible stats.

C. Weapon Generation

Fig 36 Generate Weapon Function

1. Fetch Value: first the function fetch fields from the UI
input-ed by the user. Includes class, manufacturer, element and
min_stat.
2. Filter by Class: next filtering the complete parts list down to
only those matching the chosen weapon class.
3. Manufacturer Filtering :
Manufacturer Filtering Strict Mode: if the “match
manufacturer” checkbox is checked, we discard every part
whose manufacturer doesn’t match the body’s manufacturer
mimicking full-brand synergy bonuses.
Body-Only Mode: If unchecked, we only force the body part to
match the selected maker, then allow any manufacturer for
barrels, grips, etc. This captures the game’s design where the

body sets the weapon’s brand, but accessories can come from
elsewhere.
4. Filtering element: discard element that do not match the
threshold.
5. Global Pool: create a global part pool containing parts that
goes through the filtering

Fig 17 Type Extraction and DFS Call

6. Type Extraction: the pool will then enter type extraction
grouping types becomes a sorted list of every unique slot name
(e.g. ["body", "barrel", "grip", …]). parts_by_type is a dict
mapping each slot to the list of candidate parts for that slot.
7. DFS Call: Iterate each candidate for the starting slot. Call
dfs_search, seeding it with the single chosen part in current and
asking it to fill the rest. On the first non‐None return (i.e. a
valid full build), immediately call display_result and exit,
preventing any further search.

Fig 18 DFS Implementation

The weapon generation system employs a depth‐first search
(DFS) with backtracking to assemble a complete weapon from
a compatibility graph G = (V, E) . Given an ordered list of
required part types P = [p1, …, pn] , a dictionary
parts_by_type mapping each pi to its candidate set, and a
threshold map min_stats provided from FILTERSTATS

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

Fig 19 DFS Usage to Acquire Combo

First half of the dfs_search serves as the base case check.
When no types remain, the current sequence of parts
current=[p1,…,pk] forms a full build. Its total statistics are
computed by summing individual statModifiers with
compute_total_stat(). Each stat is checked against min_stats:
for most stats a lower-bound test (value < threshold) is applied,
whereas for “reloadTime” an upper‐bound test (value >
threshold) is applied. If all constraints pass, the sequence is
returned, otherwise the branch is abandoned.
Recursive is done by the second half of the code, next_type

is the first element of the remaining_types list. For each
candidate part c ∈ parts_by_type[next_type], a compatibility
check ensures that the two parts has edge between them,
(c, p) ∈ E for every p ∈ current . Incompatible candidates
are discarded immediately. Compatible candidates trigger a
recursive call with c appended to current and next_type
removed from the remaining_type list. If any recursive call
yields a non‐None result, it is propagated upward without
exploring further siblings, thus implementing a first‐solution
exit.

Fig 20 Stat Calculation Code

Stat calculation is done by iterating through the part’s stat
modifier entry, and it adds the modifier value to
total_mod[stat]. Next, it applies any "compatibilityBonus"
entries, for each bonus rule keyed by a condition, it checks if
that condition is true in the current build, if so it adds bonus
stat to total_mod[stat] as well.
Hard coded values for the base stat mimics a simplified

version of the stat calculation of the weapon, since most of the

base stat is affected by other stat outside the weapon scope.
The base field represent the unmodified in-game stats for that
weapon body.
The final stat calculation is counted through some

formulation [2] such as:
1. Damage = Weapon Damage + total_mod[damage] (1)
2. Mag = max(0, basemagSize + total_mod[magSize]) (2)

3. (3)

4. (4)
5.

(5)

D. Visualization
NetworkX, Matplotlib, and tkinter is used, After a valid
weapon is found, then extract just those parts from the full
compatibility graph and render them as a small network
diagram. A layout spaces the nodes, which are color coded by
part type (body, barrel, grip, etc.). Edges between nodes show
compatibility, and each node is labeled with its part ID. This
Matplotlib figure is then embedded directly into the Tkinter
GUI alongside the text output.

Fig 21 Library Imports for Visualization

IV. RESULTS
The implementation of this paper resulted a python app that

can be run, user can enter threshold from the drop down or the
sliders, and the generate weapon button will show the
generated weapon result.

Fig 22 Result of Build 1

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

Build 1 (Fig. 22) demonstrates that, for modest thresholds
(Pistol, Bandit, no element, mid-range stats), the generator
finds a body, barrel, grip, stock, and accessory that all share
compatibility edges. This confirms that our graph model
faithfully encodes in-game part compatibilities.

Fig 23 Result of Build 2 (No Satisfied Part)

Build 2 (Fig. 23) shows a “no valid combination” case when
thresholds are impossibly strict (e.g., reloadTime = 0). This
aligns with game logic aside from the special “Infinity Pistol,”
no build can meet zero reload time, indicating our threshold
checks correctly prune all branches.

Fig 24 Build Result 3 (Matching Manufacturer)

Build 3 (Fig. 24) highlights the effect of the “Matching
manufacturer” option. By forcing all non-body parts to share
the body’s maker, we exploit in-game synergy bonuses. Notice
the chosen grip and barrel come from the same manufacturer,
improving stats at the cost of reducing the search space. This
shows our model accommodates secondary “compatibility
bonus” rules without additional code complexity.

Figure 25 Result Build 4 (Lower Threshold Result)

Figure 26 Result Build 5 (Higher Threshold Result)

Build 4 (Fig. 25) and Build 5 (Fig. 26) illustrate how raising
the magazine-size minimum causes the algorithm to switch
from a Jakobs to a Bandit grip. Bandit parts are known for flat
mag-size bonuses, so the system naturally gravitates toward
them under tighter constraints. Thus, our generator not only
respects thresholds but also reflects known manufacturer
tendencies.
The generator currently ignores rare elemental procs,

secondary bonuses (e.g., elemental overcharge), and level
scaling. This can lead to “false negatives” where, in the real
game engine, a high-level Maliwan barrel would meet
thresholds via hidden multipliers. In edge cases where JSON
dumps omit certain parts (e.g., unreleased DLC components),
the system reports “no valid combination” correctly, but
without distinguishing “impossible” from “data missing.” A
future data-validation pass could surface these gaps.
Overall for simplified version of the generation system, the

model provide accurate results, outside that matter, exist in-
game factors that is not stated explicitly within the constraints
or JSON file itself.

Makalah IF1220 Matematika Diskrit – Semester II Tahun 2024/2025

V. CONCLUSION
Borderlands 2 Weapon Generation system is a unique

mechanic yet lacks formal documentation, BLWeap is a
prototype tool that turns Borderlands 2’s modular weapon
system into a graph-based search. It pulls part data from the
gibbed dumps, builds a compatibility graph in NetworkX, and
uses a DFS backtracking algorithm to generate weapons that
satisfy user-defined thresholds (damage, accuracy, fire rate,
magazine size, reload time) Validate part combinations against
both compatibility and stat rules Visualize each successful
build as a color-coded subgraph. Future work could add
advanced stat models, multi-objective optimization, richer GUI
filters, batch generation, direct integration into a Borderlands 2
mod, and weapon visuals for each part to represent the final
weapon appearance. BLWeap shows how graph theory and
search algorithm can drive procedural content generation in
games.

VI. APPENDIX

Implementation of BLWeap above is stored within the
github. https://github.com/Arbane557/BLWeap Data used for
the implementation of BLWeap is provided from a github
https://github.com/gibbed/Borderlands2Dumps

VII. ACKNOWLEDGMENT

The author extends sincere appreciation to Arrival Dwi
Sentosa, S.Kom., M.T., whose invaluable guidance, support,
and encouragement throughout the preparation of this
manuscript have been truly instrumental. His expertise,
insightful feedback, and unwavering dedication to teaching
have greatly enriched the author’s understanding of the subject
matter.
REFERENCES
[1] IGN, “Borderlands 2,” 2012. [Online]. Available:

https://www.ign.com/games/borderlands-2 [Accessed 18 June 2025].
[2] “gibbed/Borderlands2Dumps,” GitHub, 2014. [Online]. Available:

https://github.com/gibbed/Borderlands2Dumps [Accessed 19 June 2025].
[3] BL2.Parts, “Borderlands 2 Parts Database.” [Online]. Available:

https://bl2.parts/ [Accessed 19 June 2025]
[4] R. Munir, “Matdis Course Materials (2024–2025),” Dept. Informatika,

STEI-ITB. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/

[5] GeeksforGeeks, “Depth-first Search or DFS for a Graph,” 2019. [Online].
Available: https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-
a-graph/ [Accessed 19 June 2025].

[6] GeeksforGeeks, “Explain the Concept of Backtracking Search and its
Role in Finding Solutions to CSPs,” 2021. [Online]. Available:
https://www.geeksforgeeks.org/explain-the-concept-of-backtracking-
search-and-its-role-in-finding-solutions-to-csps/ [Accessed 19 June 2025].

[7] Matplotlib Development Team, “Matplotlib Tutorial,” 2025. [Online].
Available: https://matplotlib.org/stable/tutorials/ [Accessed 20 June
2025].

[8] Togelius, J., Shaker, N., & Nelson, M. J. (Eds.). (2016). Procedural
Content Generation in Games. Springer.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Juni 2025

Raysha Erviandika Putra 13524050

https://github.com/Arbane557/BLWeap
https://github.com/gibbed/Borderlands2Dumps
https://www.ign.com/games/borderlands-2
https://github.com/gibbed/Borderlands2Dumps
https://bl2.parts/
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.geeksforgeeks.org/explain-the-concept-of-backtracking-search-and-its-role-in-finding-solutions-to-csps/
https://www.geeksforgeeks.org/explain-the-concept-of-backtracking-search-and-its-role-in-finding-solutions-to-csps/
https://matplotlib.org/stable/tutorials/

	I. INTRODUCTION
	II. THEORY FOUNDATION
	A. Weapon Rules
	B. Graph
	C. Search-Based Selection

	III. IMPLEMENTATION
	A. Creating The Graph
	B. Filtering
	C. Weapon Generation
	D. Visualization

	IV. RESULTS
	V. CONCLUSION
	VI. APPENDIX
	VII. ACKNOWLEDGMENT
	REFERENCES
	PERNYATAAN

